

Search for Gauge-Mediated SUSY Breaking in the Diphoton event with Large Missing E_T

29 July 2004

Minsuk Kim, Ray Culbertson, Dong-Hee Kim, Sung-Won Lee, and Dave Toback

Outline

- Theory and Previous Experiments
- Data Analysis
 - Signal Event Selections
 - Backgrounds
 - Monte Carlo of SUSY Signal
- Signal Acceptances and Systematic Uncertainties
- Expected Mass Limit and Optimization
- Cross Section Limit @ 95% CL
- Conclusions

Gauge-Mediated SUSY Breaking

SUSY Breaking Mechanism

Phenomenology

- Gravitino: the Lightest SUSY Particle (LSP)
- Neutralino or Slepton: the NLSP
- In case of Neutralino NLSP

$$\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$$
, BR ~ 100%

- Signature
 - two photons plus Missing E_T (MET)
 - dominant processes:

$$p\overline{p} \to \tilde{\chi}\tilde{\chi} \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 + X \to \gamma \gamma \tilde{G}\tilde{G} + X$$

"Sparticle Spectroscopy and Electroweak Symmetry Breaking with Gauge-Mediated Supersymmetry Breaking," Nucl. Phys. B488, 39-91

Snowmass GMSB Model line, hep-ph/0201233

Previous Searches

• CDF has found an interesting event in Run I: $ee\gamma\gamma E_T$ candidate

Mass Limits at 95% C.L. (GeV/c²)

	$ ilde{\chi}_1^{\pm}$	$oldsymbol{ ilde{\chi}_1^0}$
CDF Run I	120	65
D0 Run I	150	77
LEPII		99

Signal Event Selections

- Global Event Selections
 - Diphoton triggers in central
 - $|Z_{vertex}|$ < 60 cm
 - Runs where the detector is working (202 pb⁻¹)
- Standard Photon Identification and Isolation
- Remove cosmic ray which Bremsstrahlung or shower
- Remove event caused by Tevatron halo muons and/or beam-gas
- Additional cuts to remove MET mis-measurement

Two isolated central photons with $E_T^{\gamma} > 13 \text{ GeV}$

 \Rightarrow diphoton candidate sample of 3,306 events

Backgrounds

QCD + Fake MET

- $\gamma\gamma$, $\gamma j \rightarrow \gamma\gamma_{fake}$, $jj \rightarrow \gamma_{fake}\gamma_{fake}$ $\Rightarrow \gamma\gamma$: $29 \pm 4\%$, γj : $47 \pm 6\%$, jj: $24 \pm 4\%$ (CES/CPR method)
- Drell Yan with both electrons mis ID as photons

Electron faking photon with real or fake MET

- $W\gamma \rightarrow ev\gamma$ and $Z\gamma \rightarrow ee\gamma$ (lost tracks)
- $Wj \rightarrow evj$ (lost track and jet faking photon)
- $Z \rightarrow \tau\tau \rightarrow eevvvv + X \ (lost \ tracks)$
- $t\overline{t} \rightarrow eevv + X \ (lost \ tracks)$
- *WW*, *WZ*, *etc*.
- Cosmics, beam halo, and beam-gas

QCD with Fake Missing E_T

- The dominant background is QCD: $\gamma\gamma$, γj and jj where jet fakes photon, and MET is fake
- Estimate MET distribution from control sample of photon fakes, pass most but not all signal cuts (same MET response to signal)
 - \Rightarrow diphoton control sample of 7,806 events
- Correct the MET distribution for:
 - e-gamma contamination (avoid double counting)
 - Difference in SumET distributions (differ by 6%)
 - Normalize to MET < 20 GeV from signal sample
 - Fit low-MET region to a double exponential to get Large MET prediction (systematic uncertainty from variation of selection cut and fit function)

e faking gamma background

- Electron with a lost track can fake a photon
- Events with electrons can have real MET such as $W \gamma \rightarrow e v$
- Estimate all sources together (Wgamma, Zgamma, ttbar)
 - electron selection criteria: the normal cuts, 0.8<E/p<1.2, using unbiased Z legs, and fitting to the Z peak:
 - e-gamma signal sample of 462 events
 - : added after multiplying by fake-rate¹⁾
 - e-gamma control sample of 355 events

: subtracted from control sample after multiplying by fake- rate²⁾

$$fake \ rate = \frac{P_{recon}(e \to \gamma)}{P_{recon}(e \to e)}$$
 1) 1.1±0.4% for one leg passing tight photon cut 2) 2.8±0.5% for one leg passing loose-but-not tight cut

Cosmic/Halo/Beam-gas background (Remaining after all cuts)

Three types:

- 1) source causes one photon
- 2) source causes both photons
- 3) source causes other energy in the event, unrelated to photons

Ways to Reject:

- Photon(s) opposite MET and same magnitude of MET
- Tevatron Beam halo rejection:
 (longitudinal energy deposits, wall calorimeter MIPs, efficiency=97%, rejection=good, CDF Note 6009)
- Out-Of-Time energy from Hardron TDC
- Expected 0.12 events for MET > 45 GeV

Missing E_T Spectrum

- 0 events observed with MET > 45 GeV
- The expected numbers of background events for MET > 45 GeV

QCD and SM $\gamma\gamma$	e faking γ	cosmic	Total
$0.01 \pm 0.01 \pm 0.01$	$0.14 \pm 0.06 \pm 0.05$	$0.12 \pm 0.03 \pm 0.09$	$0.27 \pm 0.07 \pm 0.10$

10

SUSY Signal Monte Carlo

- Estimate Acceptance with ISAJET and Detector simulation
- Correct for differences between MC and detector performance

11

Signal Acceptances

• Efficiency Corrections

	Correction to MC			
Z Study per photon	-3.50%			
Conversion per pho	-3.70%			
Vertex	-1.7%			
Trigger	-0.3%			
$0.930 \times 0.926 \times 0.983 \times 0.997 = 0.841$				
Total correction	-16%			

Systematic Uncertainties

	Syste uncerta	matic inty (%)
Luminosity	(3
Monte Carlo statistics	1	
Cut efficiency	13	
ISR/FSR	SR/FSR 10	
Q^2	3	
PDFLIB (MRST98 LO)	+1	-5
	+17.8	-18.4
Total	18	%

Background uncertainties		
e-gamma 32%		
control sample		
1) selection cuts	60%	
2) fit variations	70%	

Variable	Relative Syst. Uncertainty (%)
Had/Em	1.0
Cone 0.4 IsoEtCorr	5.0
Chi2 (Strip+Wires)/2	2.0
N track (N3D)	0.5
Track Pt	1.0
Cone 0.4 Track Iso	1.0
Fiducial	3.0
Conversions	1.2
Total per photon	6.5%
Total per diphoton	13%

Expected Limit vs. MET cut

From Data: Two isolated central photons with Et>13 GeV

- Cuts(E_T, MET clean-up, and MET) have been checked for optimization

Cross Section Limit @ 95% C.L.

- 0 events observed with $E_T > 45 \text{ GeV}$
- $0.27 \pm 0.07(stat.) \pm 0.10(syst.)$ expected
- 18% systematic uncertainty on $\varepsilon \times \mathcal{L}$
- \Rightarrow N_{95% C.L.} limit of 3.3 events
- NLO Limit at 95% C.L.

$$m(\tilde{\chi}_{1}^{\pm}) > 167 \text{ GeV/c}^{2}$$

$$m(\tilde{\chi}_1^0) > 93 \text{ GeV/c}^2$$

"The Production of Chaginos/Neutralinos and Sleptons at Hardron Colliders," PRL.83 (1999), 3780-3783

T.Plehn and M.Klasen et.al.

Conclusions

- We have searched for isolated high E_T diphoton events with large MET using data corresponding 202 pb⁻¹ (CDF Notes: 6310, 6317, and 6389)
- For MET > 45 GeV, 0 events observed with $0.27 \pm 0.07(stat.) \pm 0.10(syst.)$ events expected
- Set a lower mass limit in GMSB (NLO) with 18% systematic uncertainty at 95% C.L.

$$m(\tilde{\chi}_{1}^{\pm}) > 167 \text{ GeV/c}^2 \text{ and } m(\tilde{\chi}_{1}^{0}) > 93 \text{ GeV/c}^2$$

- GP committee: Henry (chair), Jane, and Giulia http://www-cdf.fnal.gov/internal/physics/GMSBDiPho
- Paper draft in progress